Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps.

نویسندگان

  • D K Srivastava
  • B J Berg
  • R Prasad
  • J T Molina
  • W A Beard
  • A E Tomkinson
  • S H Wilson
چکیده

Base excision repair (BER) is one of the cellular defense mechanisms repairing damage to nucleoside 5'-monophosphate residues in genomic DNA. This repair pathway is initiated by spontaneous or enzymatic N-glycosidic bond cleavage creating an abasic or apurinic-apyrimidinic (AP) site in double-stranded DNA. Class II AP endonuclease, deoxyribonucleotide phosphate (dRP) lyase, DNA synthesis, and DNA ligase activities complete repair of the AP site. In mammalian cell nuclear extract, BER can be mediated by a macromolecular complex containing DNA polymerase beta (beta-pol) and DNA ligase I. These two enzymes are capable of contributing the latter three of the four BER enzymatic activities. In the present study, we found that AP site BER can be reconstituted in vitro using the following purified human proteins: AP endonuclease, beta-pol, and DNA ligase I. Examination of the individual enzymatic steps in BER allowed us to identify an ordered reaction pathway: subsequent to 5' "nicking" of the AP site-containing DNA strand by AP endonuclease, beta-pol performs DNA synthesis prior to removal of the 5'-dRP moiety in the gap. Removal of the dRP flap is strictly required for DNA ligase I to seal the resulting nick. Additionally, the catalytic rate of the reconstituted BER system and the individual enzymatic activities was measured. The reconstituted BER system performs repair of AP site DNA at a rate that is slower than the respective rates of AP endonuclease, DNA synthesis, and ligation, suggesting that these steps are not rate-determining in the overall reconstituted BER system. Instead, the rate-limiting step in the reconstituted system was found to be removal of dRP (i.e. dRP lyase), catalyzed by the amino-terminal domain of beta-pol. This work is the first to measure the rate of BER in an in vitro reaction. The potential significance of the dRP-containing intermediate in the regulation of BER is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resistance to Nucleotide Excision Repair of Bulky Guanine Adducts Opposite Abasic Sites in DNA Duplexes and Relationships between Structure and Function

The nucleotide excision repair of certain bulky DNA lesions is abrogated in some specific non-canonical DNA base sequence contexts, while the removal of the same lesions by the nucleotide excision repair mechanism is efficient in duplexes in which all base pairs are complementary. Here we show that the nucleotide excision repair activity in human cell extracts is moderate-to-high in the case of...

متن کامل

Base excision repair intermediates are mutagenic in mammalian cells

Base excision repair (BER) is the main pathway for repair of DNA damage in mammalian cells. This pathway leads to the formation of DNA repair intermediates which, if still unsolved, cause cell lethality and mutagenesis. To characterize mutations induced by BER intermediates in mammalian cells, an SV-40 derived shuttle vector was constructed carrying a site-specific lesion within the recognition...

متن کامل

Abasic and oxidized ribonucleotides embedded in DNA are processed by human APE1 and not by RNase H2

Ribonucleoside 5'-monophosphates (rNMPs) are the most common non-standard nucleotides found in DNA of eukaryotic cells, with over 100 million rNMPs transiently incorporated in the mammalian genome per cell cycle. Human ribonuclease (RNase) H2 is the principal enzyme able to cleave rNMPs in DNA. Whether RNase H2 may process abasic or oxidized rNMPs incorporated in DNA is unknown. The base excisi...

متن کامل

Templated chemistry for monitoring damage and repair directly in duplex DNA.

We report the fluorogenic detection of the product of base excision repair (an abasic site) in a specific sequence of duplex DNA. This is achieved by DNA-templated chemistry, employing triple helix-forming probes that contain unnatural nucleobases designed to selectively recognize the site of a missing base. Light-up signals of up to 36-fold were documented, and probes could be used to monitor ...

متن کامل

DNA cleavage induced by antitumor antibiotic leinamycin and its biological consequences.

The natural product leinamycin has been found to produce abasic sites in duplex DNA through the hydrolysis of the glycosidic bond of guanine residues modified by this drug. In the present study, using a synthetic oligonucleotide duplex, we demonstrate spontaneous DNA strand cleavage at leinamycin-induced abasic sites through a β-elimination reaction. However, methoxyamine modification of leinam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 33  شماره 

صفحات  -

تاریخ انتشار 1998